
1

®

Interfacing the Intersil X5163/323/643 CPU
Supervisors to NEC 78K Microcontrollers
AN98.0Application Note
Author: Applications Staff

June 13, 2005
Introduction
The Intersil CPU Supervisors have an on-chip
programmable watchdog timer and nonvolatile EEPROM
memory. These features, coupled with the 3-line Serial
Peripheral Interface (SPI) and the 78K-series micro-
controller from NEC, make for an effective combination of
features and performance. This application note will explore
some possibilities and will provide example schematics and
software.

Interface
The 78K-Series microcontroller typically has two serial ports.
One of these, a synchronous three-line interface, can be
used with the SPI watchdog timer (SPI WDT). This interface
requires only one additional line, a chip select. Figure 1
shows a possible configuration. As illustrated this connection
requires no additional components. Sample code, provided
in a later section, is written to support the hardware shown in
Figure 1.

Implementation
While the interface and code implementation is not complex,
there are some areas where care must be taken to achieve
functional code. A write enable command (WREN) must
precede each write operation, including a write to the status
register. The WREN command begins with the CS line going
LOW and completed with the CS line returning HIGH. Once
writes have been enabled, they are active only during a byte,
page, or status register write. This means a WREN
command must precede each write operation. The write
enable bit is also reset automatically upon power-up.

It is possible to write a block of data in a single operation.
However, each block is 32 bytes long and a block write
cannot cross a block boundary. The block boundaries begin
at addresses where bits A4 through A0 are “0”. As previously
described, a WREN command is required before a new
block can be written. This block write mechanism is
implemented in the sample firmware code.

It is possible to write new values into the status register to
change block protection and change the watchdog timer
value. Since the status register is nonvolatile, a write to the
register must follow the same restrictions as other
nonvolatile writes. This means that a write to the status
register will take a maximum of 10ms to complete, and
cannot occur concurrently with data write operations.

When using the watchdog timer, a RESET signal is sent out
after a selectable period of time. If the microcontroller does
not respond in this amount of time, it will be reset. By
toggling the CS line, the watchdog RESET can be held-off.
The sample firmware code does not include this watchdog
timer RESET hold-off operation.

The circuit of Figure 1 shows a pull-up resistor on the
RESET line. This is required, since the SPI WDT has an
open drain output. Typically, however, the microcontroller
has a RESET circuit that allows a user initiated re-start. In
this case, the resistor shown in the figure is not an additional
component, but part of the reset mechanism.

78K-Series

CS

SCK
SO
SI

WP

VSS

1

6
2
5

8

3

7

4

P60

SCK

X5163

RESET

SI
SO

RESETVCC

VCC

FIGURE 1. INTERFACING THE INTERSIL X5163 CPU
SUPERVISOR TO THE 78K-SERIES µC USING
THE SYNCHRONOUS SERIAL PORT
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.

Copyright Intersil Americas Inc. 2005. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

Application Note 98
Code Listings
The listing for the interface firmware is included on following
pages. The code consists of a test program that moves a
block of data from ROM to the EEPROM, then moves the
block from EEPROM to the 78K2 internal RAM. The
EEPROM-specific routines takes less than 170 bytes of
code. These routines are:

Init_SIO—This routine will set up the synchronous serial
port to communicate with the SPI WDT.

Put_Byte—This routine sends a data byte to the EEPROM
using the internal hardware shifter of the microcontroller.

Write_Stat—This routine will write a value into the EEPROM
status register.

Get_Byte—This routine gets a byte from the EEPROM
using the internal hardware shifter of the microcontroller.

Wait_COM—After writing a byte to the microcontroller
internal hardware shift register, this routine will wait for a
byte transmit to complete.

Wait_EE—This routine will wait for a EEPROM write to
complete.

E2_Command_Fix—This routine will send one of the
various commands to the EEPROM.

Block_Read—This routine will read a block of data from the
EEPROM and will save the block in RAM. The EEPROM
source address pointer and the destination address pointer,
along with the block size in bytes, are pre-specified.

Block_Write—This routine writes a block of data to the
EEPROM. The data source address pointer and the
EEPROM destination address pointer are pre-specified, as
is the number of bytes in the block. This routine handles data
blocks that do not begin on an EEPROM border and can
handle blocks greater than 32 bytes.

Read_Stat—This routine will return the current value in the
EEPROM Status register.

Conclusion
Few members of NEC's 78K-series microcontrollers come
equipped with an on-board watchdog timer and only one
family (the uPD7824x) has on-chip EEPROM. The
introduction of the SPI WDT by Intersil removes these two
limitations with a single 8-lead device. Since this
combination requires no interface hardware and minimal
code, it is the perfect combination for many industrial control
applications.

Additional Intersil code can be found on the World Wide Web
at http://www. intersil.com.
2 AN98.0
June 13, 2005

Application Note 98
$ TITLE ('X25163Interface')
; File Name: MPC
$ PC(213)
;________________________________
;
; OPERATION:
;
; This program will access the Intersil Serial EEPROM
; with Serial Peripheral Interface (SPI) and watchdog timer
;
; This routine is set up for an EEPROM that uses the
; synchronous serial I/O port of the K-series devices.
;
; This program is written for the DDB...
;________________________________
; TESTPG:
;________________________________
;
; Define Equates
;
WREN equ 06H ; Command: Write enable
WRDI equ 04H ; Command: Write Disable
RDSR equ 05H ; Command: Read Status Register
WRSR equ 01H ; Command: Write Status Register
READ equ 03H ; Command: Read EEPROM
WRITE equ 02H ; Command: Write EEPROM
;
WIP equ A.0 ; EEPROM Write in Progress
CE_ equ P6.0 ; Chip enable line
Msg1 equ 5 ; Start address of EEPROM block
;
NUM_TRY equ 50 ; read WIP this long before giving up
;
; Define Stack area
;
STKSEG DSEG AT 0FE00H
 DS 32
STACK:
;
; Define Variables
;
VARIAB DSEG AT 0FE20H
BYTE_COUNT: DS 1
MESSAGE: DS 40 ; Where data is to be moved.
; ; Used for a test program..,
;
; Vector Table
;
VRESET CSEG AT 9000H ;
 BR START ;

CMAIN CSEG AT 9080H
;______________________________________
; Main Routine
;______________________________________
;
; Initialize System...
;
START:
 di ; Disable interrupts
 mov MM, #00010111B ; Ext ROM Fetch,no ext addr,1 wait
3 AN98.0
June 13, 2005

Application Note 98
 mov RFM, #00000000B ; Disable refresh pulse out
 mov PM6, #00000000B ; Select Mem bank 0, P64-67=output
 movw SP, #STACK ; Set stack pointer
;
 call !Init_SIO ; Initialize Serial I/O port
; Turn on Xmit & Recv
;
 mov PM0, #0
 mov P0, #0H
 set1 CE_ ; Disable the EEPROM
;__
;
; The following is a Test program that writes a block of
; data into the EEPROM from ROM, then reads it back into
; the 78K2 internal RAM area.
;___
;
TEST:
 movw HL, #MSG_ROM ; Location of message in ROM
 movw DE, #Msg1 ; Location of message 1 in EEPROM
 mov BYTE_COUNT, #35 ; Write 35 bytes to EEPROM

 call !Block_Write ; Write the block

 movw HL, #MESSAGE ; Location of message in RAM
 movw DE, #Msg1 ; Location of message 1 in EEPROM
 mov BYTE_COUNT, #35 ; Read 35 bytes from EEPROM

 call !Block_Read

 mov X, #10H ; Set WD Timer to 600 mSec
 call !Write_Stat ; Set WD Timer

 call !Fini_SIO ; Turn off Serial I/O port

LOOP:
 NOP
 BR LOOP

MSG_ROM:
 DB 'This is a test of the Serial EEPROM'

;==
; Following are the various routines to complete the
; above operation...
;
; Init_SIO Initialize the Serial I/O Port
; Fini_SIO Turn off the Serial I/O
;
; Wait_COM Wait for the communication to complete
; Wait_EE Wait for EEPROM Write to complete
;
; Put_Byte Sends one byte to the EEPROM
; Get_Byte Gets one Byte from the EEPROM
;
; E2_Command_Fix Sends one of 6 commands
;
; WREN (Write Enable)
; WRDI (Write Disable)
; RDSR (Read Status register)
; WRSR (Write Status Register)
4 AN98.0
June 13, 2005

Application Note 98
; READ (Read EEPROM)
; WRITE (Write EEPROM)
;
; Read_Stat Reads the EEPROM Status register
; Write_Stat Writes the EEPROM Status Register
;
; Block_Read Reads a block of data from the EEPROM
; Block_Write Writes a block of data to the EEPROM
;
;===
;
;__
; Init_SIO
;
; This routine will initialize the Serial I/O port for
; Synchronous operation, using internal clocking at 750K bps.
;
; Routines Called: None
; Input: None
; Output: None
; Registers used: A
;__
;
Init_SIO:

 or MK0H, #10000000B ; Disable serial interrupt
 or PMC3, #0CH ; Use SO and SCK
 mov CSIM, #2 ; Set Serial clock to fCLK/8
 set1 CTXE ; Turn on transmit mode
 set1 CRXE ; Turn on receive mode

End_Ser_Setup:

 clr1 WUP ; Interrupt gen after each xfer
 clr1 CSIIF ; Clear Sync Serial Intr Flag
 ret
;
;__
; Fini_SIO
;
; This routine will initialize the Serial I/O port for
; Synchronous operation, using internal clocking at 750K bps.
;
; Routines Called: None
; Input: None
; Output: None
; Registers used: A
;__
;
Fini_SIO:

 clr1 CTXE ; Turn off transmit mode
 clr1 CRXE ; Turn off receive mode
 br End_Ser_Setup
;__
; Wait_COM
;
; This routine will wait for an interrupt to signal a xmit or
; recv complete
;
; Routines Called: None
5 AN98.0
June 13, 2005

Application Note 98
; Input: None
; Output: None
; Registers used: None
;__
;
Wait_COM:

 btclr CSIIF, $Return ; Wait for completion of Xmit/Rcv
 br Wait_COM

return:

 ret
;__
; Wait_EE
;
; This routine will wait for the EEPROM write sequence to
; complete.
;
; Routines Called: None
; Input: None
; Output: None
; Registers used: A, B
;__
;
Wait_EE:

 mov B, #NUM_TRY ; Maximum number of samples

Wait_EE_LP:

 call !Read_Stat ; Read the Status Register

 bf WIP, $Wait_done ; If Write complete, done...
 dbnz B, $Wait_EE_LP ; If not done, give it more time
 ; but not too much...
Wait_done:

 ret ; else, return
;__
; Put_Byte
;
; This routine will move one byte of data from memory pointed
; to by the HL register to the EEPROM.
;
; Routines Called: None
; Input: HL = Address of data to send
; Output: HL = Next address of data to send
; Registers used: A, HL, B
;__
;
Put_Byte:

 mov SIO, A ; Put byte to serial port
 br Wait_COM ; Wait for byte to be sent
;__
; Get_Byte
;
; This routine will move one byte of data from the EEPROM
; to memory pointed to by the HL register.
;

6 AN98.0
June 13, 2005

Application Note 98
; Routines Called: None
; Input: None
; Output: A = Returned byte
; Registers used: AX, B
;__
;
Get_Byte:

 mov SIO, #0 ; Send dummy byte to activate recv
 call !Wait_COM ; Wait for byte to be recv'd
 mov A, SIO ; Get byte
 ret
;__
; E2_Command_Fix
;
; This routine will send a control signal to the EEPROM
;
; 06H ; Command: Write enable
; 04H ; Command: Write Disable
; 05H ; Command: Read Status Register
; 01H ; Command: Write Status Register
; 03H ; Command: Read EEPROM
; 02H ; Command: Write EEPROM
;
; Routines Called: None
; Input: A = Command; DE = Address in EEPROM
; Output: None
; Registers used: None
;__
;

E2_Command_Fix:

 clr1 CE_ ; Enable EEPROM
 br Put_byte ; Write a Command to serial port

;__
; Read_Stat
;
; This routine will read a value from the status register
;
; Routines Called: None
; Input: None
; Output: A = Status Reg value
; Registers used: A
;__
;
Read_Stat:

 mov A, #RDSR ; Read Status Register
 call !E2_Command_Fix

 call !Get_byte ;
 set1 CE_ ; Disable the chip

 ret
;__
; Write_Stat
;
; This routine will write a value to the status register
;

7 AN98.0
June 13, 2005

Application Note 98
; Routines Called: None
; Input: X = Status register data
; Output: None
; Registers used: A, X
;__
;
Write_Stat:

 mov A, #WREN ; Prepare to enable writing
 call !E2_Command_Fix ; Send a WREN command
 set1 CE_ ; Disable EEPROM

 mov A, #WRSR ; Write Status Register
 call !E2_Command_Fix

 mov A, X ; Write the status
 mov P0, #1
 call !Put_byte ;
 set1 CE_ ; Disable the chip

 ret
;__
; Block_Read
;
; This routine will read a block of data from the EEPROM
;
; Routines Called: Get_Data_Byte
; Input: HL = Save address pointer,
; BYTE_COUNT = number of bytes
; Output: HL = Address of next save location
; Registers used: A, HL, BYTE_COUNT
;__
;
Block_Read:

 mov A, #READ ; Send reset command
 call !E2_Command_Fix

 mov A, D ; Send upper address byte
 call !Put_Byte ; Send EEPROM Start Address
 mov A, E ; Send lower address byte
 call !Put_Byte ; Send EEPROM Start Address
 ; DE = EEPROM Address
Blk_Rd_Loop:

 call !Get_Byte
 mov [HL+], A
 dbnz BYTE_COUNT, $Blk_Rd_Loop
 set1 CE_ ; Disable EEPROM

 ret
;__
; Block_Write
;
; This routine will write a block of data to the EEPROM
; Since the EEPROM has a 32 byte page, a limit of 32 bytes of
; data can be written before the issuing of a non-volatile write
; cycle. Also, in order to avoid data wrapping on a page, care
; must be taken when writing over page boundaries.
;
; Routines Called: E2_Command_Fix, Put_Byte, Wait_EE
8 AN98.0
June 13, 2005

Application Note 98
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to
verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com

; Input: DE = Internal Address of EEPROM
; (where data is to be written)
; HL = Address of data to be written
; BYTE_COUNT = Number of bytes to write
; Output: None
; Registers used: AX, DE, HL, BYTE_COUNT
;__
;
Block_Write:

 mov A, #WREN ; Prepare to enable writing
 call !E2_Command_Fix ; Send a WREN command
 set1 CE_ ; Disable EEPROM

Write_OP:

 mov A, #WRITE
 call !E2_Command_Fix ; Start writing
 mov A, D ; Send upper address byte
 call !Put_Byte ; Send EEPROM Start Address
 mov A, E ; Send lower address byte
 call !Put_Byte ; Send EEPROM Start Address
 ; DE = EEPROM Address
Blk_Loop:

 mov a, [HL+] ; Get next byte
 call !Put_Byte ; Send it out
 ; HL points to next byte
 dbnz BYTE_COUNT, $Next_bit ; Count byte, if last one, go write
 br NV_Write ; else check for 32 byte boundary

Next_bit:

 incw DE ; Increment EEPROM address pointer
 mov A, E
 and A, #31 ; Check for 32 byte block boundary
 cmp A, #0 ; Is this a new block start?
 bne $Blk_Loop ; No, keep sending

NV_Write:

 set1 CE_ ; Disable EEPROM
 call !Wait_EE ; Wait for any writes to complete
 cmp BYTE_COUNT, 0 ; If not all bytes are sent
 bne Block_Write ; keep on...
;
 mov A, #WRDI
 call !E2_Command_Fix ; Disable writes
 set1 CE_ ; Disable EEPROM

 ret
 END
9 AN98.0
June 13, 2005

